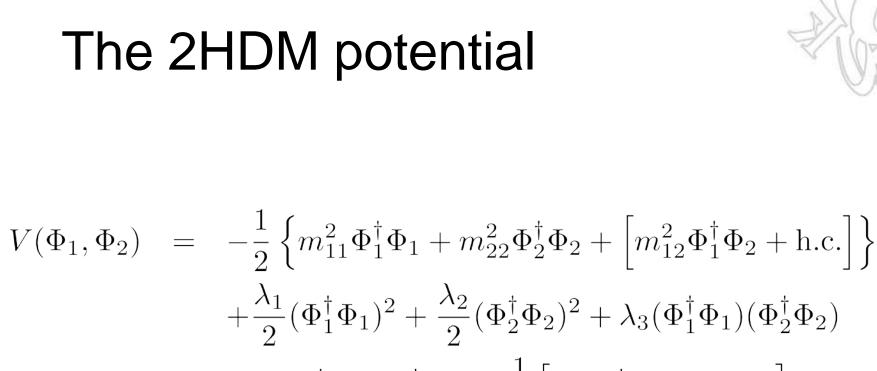
The CP properties of the 2HDM

Talk given at *Scalars 2011* Odd Magne Ogreid Bergen University College



$$+\lambda_4(\Phi_1^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1) + \frac{1}{2} \left[\lambda_5(\Phi_1^{\dagger}\Phi_2)^2 + \text{h.c.}\right] \\ + \left\{ \left[\lambda_6(\Phi_1^{\dagger}\Phi_1) + \lambda_7(\Phi_2^{\dagger}\Phi_2)\right](\Phi_1^{\dagger}\Phi_2) + \text{h.c.} \right\}$$

EWSB

 Vacuum expectation values – most general form that preserves U(1)_{em} :

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \quad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 e^{i\theta} \end{pmatrix}$$

Change of basis

- Initial expression of potential is defined with respect to fields Φ_1 and Φ_2 this defines our initial basis.
- We can change to a new basis by the following transformation

$$\bar{\Phi}_i = U_{ij}\Phi_j$$

where U is a U(2) matrix.

CP-properties

- Higgs-sector is CP-conserving if a basis exists in which all the parameters of the potential AND the vevs are simultaneously real.
- If CP is broken, it can be broken either explicitly or spontaneously.
 - <u>Explicit breaking</u>: No basis exists in which the parameters of the potential are all real.
 - <u>Spontaneous breaking</u>: A basis exists in which all the parameters of the potential are real, but the vevs cannot be made real simultaneously.

Motivation

- Will it be possible in experiments to measure if CP is broken *explicitly* or *spontaneously*?
- Will the type of CP-violation (explicit vs spontaneous) have any important physical consequences?

CP conservation

- To determine if CP is conserved or broken, we study the three weak-basis invariants J₁, J₂, J₃.
- If J_1 , J_2 , J_3 are all real, CP is conserved.
- If at least one of J₁, J₂, J₃ is complex, CP is broken.

CP breaking

- If CP is not conserved, we can determine if it is broken spontaneously or explicitly by studying another set of invariants: I_{Y3Z}, I_{2Y2Z}, I_{6Z}, I_{3Y3Z}.
- If CP is not conserved, and at the same time I_{Y3Z}, I_{2Y2Z}, I_{6Z}, I_{3Y3Z} are all zero, then CP is spontaneously broken.
- If CP is not conserved, and at the same time at least one of I_{Y3Z} , I_{2Y2Z} , I_{6Z} , I_{3Y3Z} is non-zero, then CP is broken explicitly.

Assumptions

• Z₂ symmetry only softly broken:

$$\lambda_6 = \lambda_7 = 0$$

Real "vacuum"

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix}, \quad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}$$

with
$$v_1^2 + v_2^2 = v^2 = (246 \text{ GeV})^2$$

The invariants J_i

$$Im J_{1} = -\frac{v_{1}^{2} v_{2}^{2}}{v^{4}} (\lambda_{1} - \lambda_{2}) Im \lambda_{5} Im J_{2} = -\frac{v_{1}^{2} v_{2}^{2}}{v^{8}} \left[\left((\lambda_{1} - \lambda_{3} - \lambda_{4})^{2} - |\lambda_{5}|^{2} \right) v_{1}^{4} + 2(\lambda_{1} - \lambda_{2}) Re \lambda_{5} v_{1}^{2} v_{2}^{2} \right. \\ \left. - \left((\lambda_{2} - \lambda_{3} - \lambda_{4})^{2} - |\lambda_{5}|^{2} \right) v_{2}^{4} \right] Im \lambda_{5} Im J_{3} = \frac{v_{1}^{2} v_{2}^{2}}{v^{4}} (\lambda_{1} - \lambda_{2}) (\lambda_{1} + \lambda_{2} + 2\lambda_{4}) Im \lambda_{5}$$

The invariants I_{Y3Z} , I_{2Y2Z} , I_{6Z} , I_{3Y3Z}

$$I_{Y3Z} = 0,$$

$$I_{2Y2Z} = \frac{1}{4} (\lambda_1 - \lambda_2) \operatorname{Im} \left[(m_{12}^2)^2 \lambda_5^* \right]$$

$$I_{3Y3Z} = -\frac{1}{8} (m_{11}^2 - m_{22}^2) \left[(\lambda_1 - \lambda_3 - \lambda_4) (\lambda_2 - \lambda_3 - \lambda_4) - |\lambda_5|^2 \right]$$

$$\times \operatorname{Im} \left[(m_{12}^2)^2 \lambda_5^* \right]$$

$$I_{6Z} = 0.$$

CP conservation:

CP is conserved if one or more of the following conditions are satisfied:

- $V_1 = 0$
- $v_2 = 0$
- Im $\lambda_5 = 0$
- $\lambda_1 = \lambda_2$ and $v_1 = v_2$
- $\lambda_1 = \lambda_2$ and $(\lambda_1 \lambda_3 \lambda_4)^2 = |\lambda_5|^2$

CP is broken spontaneously when:

• CP is not conserved

AND in addition one (or both) of the following conditions are satisfied

• Im
$$\left[(m_{12}^2)^2 \lambda_5^* \right] = 0$$

•
$$\lambda_1 = \lambda_2$$
 and $m_{11}^2 = m_{22}^2$

CP is broken explicitly when:

• CP is not conserved or broken spontaneously

Strategy

- Start out with a physical spectrum, mixing angles and "vacuum expectation values". (Pick M_1 , M_2 , M_2 , and $\beta = v_2 / v_1$, μ^2 , α_i)
- From this, calculate the parameters of the potential, (λ_i and m_{ij}) and (M_3)²
- Apply theoretical (and experimental) constraints
- Determine the CP properties

Theoretical constraints

- Positivity (potential must be bounded from below)
- Globality (the starting "vacuum" should be the global minimum of the potential)
- Unitarity (unitarity at tree level)

Two cases

Case A

- M₁ = 100 GeV
- M₂ = 300 GeV
- M[±] = 500 GeV
- $\mu^2 = (200 \text{ GeV})^2$
- $\tan \beta = 2$
- $\alpha_1 = -\pi/6$ Explore the CP properties in α_2 - α_3 space

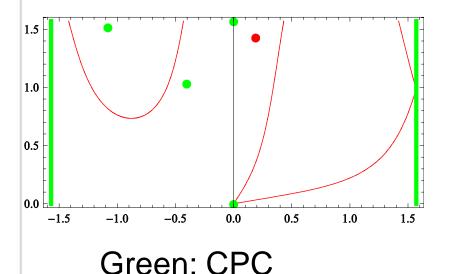
Case B

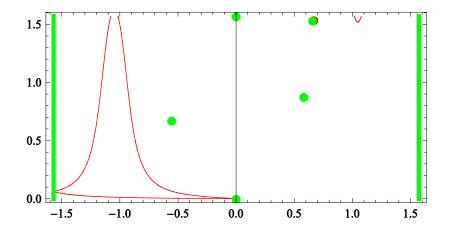
- M₁ = 100 GeV
- M₂ = 300 GeV
- M[±] = 500 GeV
- $\mu^2 = (200 \text{ GeV})^2$
- $\tan \beta = 2$

• $\alpha_1 = \pi/6$ Explore the CP properties in α_2 - α_3 space

The CP properties

Case A: $\alpha_1 = -\pi/6$

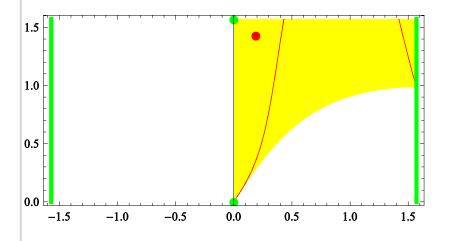


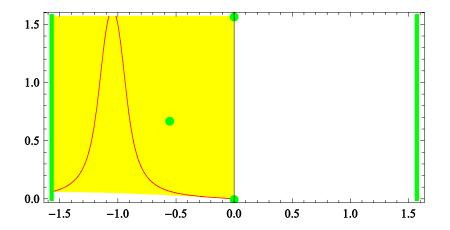


Red: Spontaneous CPV

Region with $(M_3)^2 > (M_2)^2$

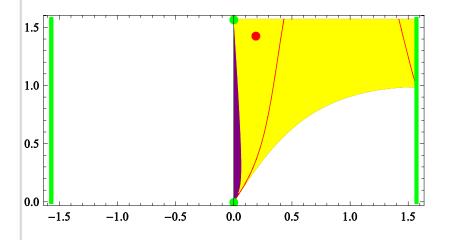
Case A: $\alpha_1 = -\pi/6$

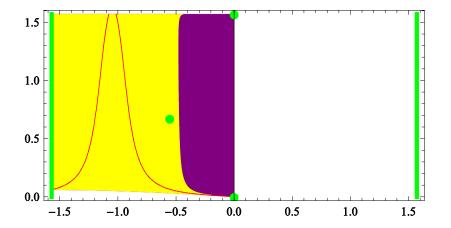




Positivity constraint imposed

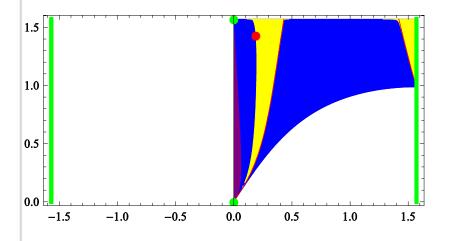
Case A: $\alpha_1 = -\pi/6$

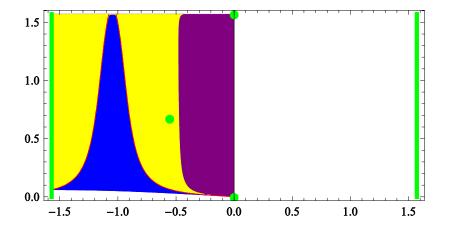




Globality constraint imposed

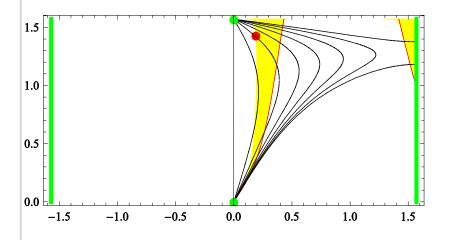
Case A: $\alpha_1 = -\pi/6$

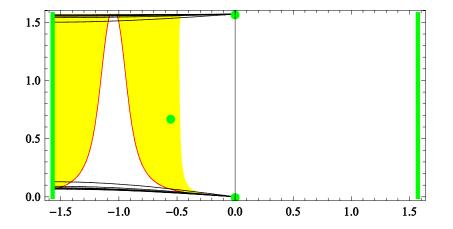




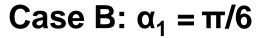
Mass contours for M_3

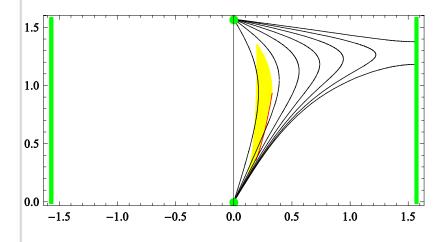
Case A: $\alpha_1 = -\pi/6$

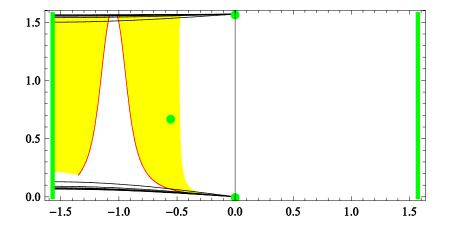




Unitarity constraint imposed







Summary

- SCPV only appears along the boundary between the explicitly CP-violating region and the region forbidden because our "vacuum" is not the global minimum.
- When we have SCPV the potential has two minima of exactly the same depth, meaning that the global minimum is not unique.

Open questions

- What are the physical implications of two minima of the same depth?
- Will the universe choose one of these minima, or exist in a mixed state?
- Could the early universe have rested in a "false vacuum" before tunneling into the proper vacuum?
- Is our universe today in a state of a "false vacuum" so that it at a later stage may tunnel into the proper vacuum?

